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Overview

If we look at the map showing contours along
the Hudson River in New York, we will notice
that the tributary streams flow perpendicular to
the contours. The streams are following paths
of steepest descent so the waters reach the Hud-
son as quickly as possible. Therefore, the fastest
instantaneous rate of change in a stream’s ele-
vation above sea level has a particular direction.
In this lecture, we will see why this direction,
called the downhill direction, is perpendicular to
the contours.

The figure shows contours along the Hudson

River in New York show streams, which follow

paths of steepest descent, running perpendicular

to the contours.
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Directional Derivatives in the Plane

Let z = f (x , y) be the surface shown and assume the hiker is at the point

(a, b, f (a, b)).

P. Sam Johnson Directional Derivatives in the Plane 3 / 73



Directional Derivatives in the Plane

The hiker would like to travel on the surface in the direction of unit vector

u = u1i + u2j.
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Directional Derivatives in the Plane

Let s be the horizontal distance traveled.
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Directional Derivatives in the Plane

The change in elevation with respect to horizontal distance traveled is

d

ds
f (a + su1, b + su2).

By chain rule, we get(df
ds

)
u,(a,b)

=
(∂f
∂x

)
(a,b)

dx

ds
+
(∂f
∂y

)
(a,b)

dy

ds

=
(∂f
∂x

)
(a,b)

.u1 +
(∂f
∂y

)
(a,b)

.u2

=
[(∂f
∂x

)
(a,b)

i +
(∂f
∂y

)
(a,b)

j
]
.
[
u1i + u2j

]
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Directional Derivatives in the Plane

(df
ds

)
u,(a,b)

=
[(∂f
∂x

)
(a,b)

i +
(∂f
∂y

)
(a,b)

j
]
.
[
u1i + u2j

]
gives the rate of change of elevation as the hiker travels in the direction of
u at the moment the hiker is at location (a, b, f (a, b)).
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Directional Derivatives in the Plane

Recall that if z = f (x , y), then the partial derivatives fx and fy are defined
as

fx(x0, y0) = lim
h→0

f (x0 + h, y0)− f (x0, y0)

h

fy (x0, y0) = lim
h→0

f (x0, y0 + h)− f (x0, y0)

h

and represent the rates of change of z in the x- and y -directions, that is,
in the directions of the unit vectors i and j.

Suppose that we now wish to find the rate of change of z at (x0, y0) in the
direction of an arbitrary unit vector u = u1i + u2j. To do this we consider
the surface S with equation z = f (x , y) (the graph of f ) and we let
z0 = f (x0, y0).
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Directional Derivatives in the Plane

Then the point P(x0, y0, z0) lies on S . The vertical plane that passes
through P in the direction of u intersects S in a curve C .

The slope of the tangent line T to C at the point P is the rate of change
of z in the direction of u.
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Directional Derivatives in the Plane

We know that if f (x , y) is differentiable, then the rate at which f changes
with respect to t along a differentiable curve x = g(t), y = h(t) is

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

At any point
P0(x0, y0) = P0(g(t0), h(t0)),

this equation gives the rate of change of f with respect to increasing t and
therefore depends, among other things, on the direction of motion along
the curve.
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Directional Derivatives in the Plane

If the curve is a straight line and t is the arc length parameter along the
line measured from P0 in the direction of a given unit vector u, then

df /dt

is the rate of change of f with respect to distance in its domain in the
direction of u.

By varying u, we find the rates at which f changes with respect to
distance as we move through P0 in different directions.

Suppose that the function f (x , y) is defined throughout a region R in the
xy -plane, that P0(x0, y0) is a point in R, and that

u = u1i + u2j

is a unit vector.
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Directional Derivatives in the Plane

Then the equations

x = x0 + su1, y = y0 + su2

parameterize the line through P0 parallel to u. If the parameter s
measures arc length from P0 in the direction of u, we find the rate of
change of f at P0 in the direction of u by calculating df /ds at P0.
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Directional Derivatives in the Plane

Definition 1.

The derivative of f at P0(x0, y0) in the direction of the unit vector
u = u1i + u2j is the number(df

ds

)
u,P0

= lim
s→0

f (x0 + su1, y0 + su2)− f (x0, y0)

s
(1)

provided the limit exists.

The directional derivative is also denoted by (Du f )P0 .

The partial derivatives fx(x0, y0) and fy (x0, y0) are the directional
derivatives of f at P0 in the i and j directions. This observation can be
seen by comparing Equation (1) to the definitions of the two partial
derivatives.
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Directional Derivatives in the Plane

Example 2.

Using the definition, find the derivative of

f (x , y) = x2 + xy

at P0(1, 2) in the direction of the unit vector u = (1/
√

2)i + (1/
√

2)j.
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Solution

Applying the definition in Equation (1), we obtain(
df

ds

)
u,P0

= lim
s→0

f (x0 + su1, y0 + su2)− f (x0, y0)

s

= lim
s→0

(
1 + s√

2

)2
+
(

1 + s√
2

)(
2 + s√

2

)
− (12 + 1 · 2)

s

= lim
s→0

(
1 + 2s√

2
+ s2

2

)
+
(

2 + 3s√
2

+ s2

2

)
− 3

s

= lim
s→0

5s√
2

+ s2

s
= lim

s→0

(
5√
2

+ s

)
=

5√
2
.

the rate of change of f (x , y) = x2 + xy at P0(1, 2) in the direction u is
5/
√

2.
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Interpretation of the Directional Derivative

The equation z = f (x , y) represents a surface S in space. If

z0 = f (x0, y0),

then the point P0(x0, y0, z0) lies on S .

The vertical plane that passes through P and P0(x0, y0) parallel to u
intersects S in a curve C . The rate of change of f in the direction of u is
the slope of the tangent to C at P in the right-handed system formed by
the vectors u and k .
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Interpretation of the Directional Derivative

When u = i , the directional derivative at P0 is ∂f /∂x evaluated at
(x0, y0). When u = j , the directional derivative at P0 is ∂f /∂y evaluated
at (x0, y0).

The directional derivative generalizes the two partial derivatives. We can
now ask for the rate of change of f in any direction u, not just the
directions i and j .

Here’s a physical interpretation of the directional derivative. Suppose that

T = f (x , y)

is the temperature at each point (x , y) over a region in the plane.

Then f (x0, y0) is the temperature at the point P0(x0, y0) and (Du f )P0 is
the instantaneous rate of change of the temperature at P0 stepping off in
the direction u.

P. Sam Johnson Directional Derivatives in the Plane 17 / 73



Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative
for a differentiable function f . We begin with the line

x = x0 + su1, y = y0 + su2

through P0(x0, y0), parameterized with the arc length parameter s
increasing in the direction of the unit vector u = u1i + u2j . Then(df

ds

)
u,P0

=
(∂f
∂x

)
P0

dx

ds
+
(∂f
∂y

)
P0

dy

ds

=
(∂f
∂x

)
P0

.u1 +
(∂f
∂y

)
P0

.u2

=
[(∂f
∂x

)
P0

i +
(∂f
∂y

)
P0

j
]
.
[
u1i + u2j

]
The above equation says that the derivative of a differentiable function f
in the direction of u at P0 is the dot product of u with the special vector
called the gradient of f at P0.
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Calculation and Gradients

Definition 3.

The gradient vector (gradient) of f (x , y) at a point P0(x0, y0) is the vector

∇f =
∂f

∂x
i +

∂f

∂y
j

obtained by evaluating the partial derivatives of f at P0.

The notation ∇f is read “grad f ” as well as “gradient of f ” and “del f .”
The symbol ∇ itself is read “del.” Another notation for the gradient is
grad f , read the say it is written.
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The Directional Derivative Is a Dot Product

Theorem 4.

If f (x , y) is differentiable in an open region containing P0(x0, y0), then the
derivative of f in the direction of u at P0 is the dot product of u with the
gradient of f at P0: (df

ds

)
u,P0

= (∇f )P0 .u.

Example 5.

Find the derivative of f (x , y) = xey + cos(xy) at the point (2, 0) in the
direction of v = 3i− 4j.
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Solution

The direction of v is the unit vector obtained by dividing v by its length:

u =
v

|v|
=

v

5
=

3

5
i− 4

5
j.

The partial derivatives of f are everywhere continuous and at (2, 0) are
given by

fx(2, 0) = (ey − y sin(xy))(2,0) = e0 − 0 = 1

fy (2, 0) = (xey − x sin(xy))(2,0) = 2e0 − 2 · 0 = 2.

The gradient of f at (2, 0) is

∇f |(2,0) = fx(2, 0)i + fy (2, 0)j = i + 2j.
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Solution (contd...)

The derivative of f at (2, 0) in the direction of v is therefore

(Duf )|(2,0) = ∇f |(2,0) · u

= (i + 2j) ·
(

3

5
i− 4

5
j

)
=

3

5
− 8

5
= −1.
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The Directional Derivative Is a Dot Product

Evaluating the dot product in the formula

Duf = (∇f ).u = |∇f | |u| cos θ = |∇f | cos θ,

where θ is the angle between the vectors u and ∇f , reveals the following
properties.
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Properties of the Directional Derivative

1. The function f increases most rapidly when cos θ = 1 or when u is
the direction of ∇f . That is, at each point P in its domain, f
increases most rapidly in the direction of the gradient ∇f at P. The
derivative in this direction is

Du f = |∇f | cos(0) = |∇f |.

2. Similarly, f decreases most rapidly in the direction of −∇f . The
derivative in this direction is

Du f = |∇f | cos(π) = −|∇f |.

3. Any direction u orthogonal to a gradient ∇f 6= 0 is a direction of zero
change in f because θ then equals π/2 and

Du f = |∇f | cos(π/2) = |∇f |.0 = 0.

The above properties hold in three dimensions as well as two.
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Directional Derivative - An Example

Example 6.

Find the directions in which f (x , y) =
x2

2
+

y2

2
.

(a) increases most rapidly at the point (1, 1).

(b) decreases most rapidly at (1, 1).

(c) What are the directions of zero change in f at (1, 1)?
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Directional Derivative - An Example
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Solution

(a) The function increases most rapidly in the direction of ∇f at (1,1).
The gradient there is

(∇f )(1,1) = (x i + y j)(1,1) = i + j.

Its direction is

u =
i + j

|i + j|
=

i + j√
(1)2 + (1)2

=
1√
2

i +
1√
2

j.

(b) The function decreases most rapidly in the direction of −∇f at (1,1),
which is

−u = − 1√
2

i− 1√
2

j.

(c) The directions of zero change at (1,1) are the directions orthogonal to
∇f :

n = − 1√
2

i +
1√
2

j and − n =
1√
2

i− 1√
2

j.
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Directional Derivative - An Example

Example 7.

The directional derivative of

f (x , y) =
x2 + y2

4

at (3, 2) in the direction of

u =
1√
2

i +
1√
2

j

is about 2.47 (Verify !)

Moving in the direction of u = 1√
2

i + 1√
2

j the rate of change is about 2.5

units UP for every unit along u.
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Directional Derivative - An Example

Example 8.

The directional derivative of

f (x , y) =
x2 + y2

4

at (3, 2) in the direction of

u =
1

2
i−
√

3

2
j

is about −0.98 (Verify !)

Moving in the direction of u = 1
2 i−

√
3

2 j the rate of change is about 1 unit
DOWN for every unit along u.
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Example

Example 9.

The directional derivative of f (x , y) = x3 − 3xy + 4y2 in the direction of
the unit vector u given by angle θ = π/6 is

13− 3
√

3

2
.

Moving in the direction of u, the rate

of change is about 13−3
√

3
2 units UP

for every unit along u.
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Gradients and Tangents to Level Curves

If a differentiable function f (x , y) has a constant value c along a smooth
curve r = g(t)i + h(t)j (making the curve a level curve of f ), then
f (g(t), h(t)) = c . Differentiating both sides of this equation with respect
to t leads to the equation

d

dt
f (g(t), h(t)) =

d

dt
(c)

∂f

∂x

dg

dt
+
∂f

∂y

dh

dt
= 0(∂f

∂x
i +

∂f

∂y
j
)
.
(dg
dt

i +
dh

dt
j
)

= 0

∇f .dr
dt

= 0. (2)

Equation (2) says that ∇f is normal to the tangent vector dr
dt , so it is

normal to the curve.
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Gradients and Tangents to Level Curves

At every point (x0, y0) in the domain of a differentiable function f (x , y),
the gradient of f is normal to the level curve through (x0, y0).
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Gradients and Tangents to Level Curves

Equation (2) validates our observation that streams flow perpendicular to
the contours in topographical maps.

Since the downflowing stream will reach its destination in the fastest way,
it must flow in the direction of the negative gradient vectors from Property
2 for the directional derivative. Equation (2) tells us these directions are
perpendicular to the level curves.
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Tangent Lines to Level Curves

The observation also enables us to find equations for tangent lines to level
curves. Tangent lines to level curves are the lines normal to the gradients.

The line through a point P0(x0, y0) normal to a vector

N = Ai + Bj

has the equation
A(x − x0) + B(y − y0) = 0.

If N is the gradient

(∇f )(x0,y0) = fx(x0, y0)i + fy (x0, y0)j ,

the equation is the tangent line given by

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0) = 0.
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Tangent Lines to Level Curves

We can find the tangent to the ellipse (x2/4) + y2 = 2 by treating the
ellipse as a level curve of the function f (x , y) = (x2/4) + y2.

Example 10.

Find an equation for the tangent to the ellipse x2

4 + y2 = 2 at the point
(−2, 1).
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Solution

The ellipse is a level curve of the function

f (x , y) =
x2

4
+ y2.

The gradient of f at (-2,1) is

∇f |(−2,1) =
(x

2
i + 2y j

)
(−2,1)

= −i + 2j.

The tangent is the line

(−1)(x + 2) + (2)(y − 1) = 0

x − 2y = −4.
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Tangent Planes to Level Surfaces

If ∇F (x0, y0, z0) 6= 0, it is therefore natural to define the tangent plane
to the level surface F (x , y , z) = k at P(x0, y0, z0) as the plane that
passes through P and has normal vector ∇F (x0, y0, z0).

Using the standard equation of a plane, we can write the equation of this
tangent plane as

fx(x0, y0, z0)(x − x0) + fy (x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0.
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Algebra Rules for Gradients

If we know the gradients of two functions f and g , we automatically know
the gradients of their constant multiples, sum, difference, product and
quotient.

Notice that these rules have the same form as the corresponding rules for
derivatives of single-variable functions.

1. Constant Multiple Rule : ∇(kf ) = k∇f (any number k)

2. Sum Rule : ∇(f + g) = ∇f +∇g
3. Difference Rule : ∇(f − g) = ∇f −∇g
4. Product Rule : ∇(fg) = f∇g + g∇f

5. Quotient Rule : ∇
(

f
g

)
= g∇f−f∇g

g2 .
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Algebra Rules for Gradients

Example 11.

We illustrate two of the rules with

f (x , y) = x − y g(x , y) = 3y

∇f = i− j ∇g = 3j.

We have

1. ∇(f − g) = ∇(x − 4y) = i− 4j = ∇f −∇g Rule 2

2. ∇(fg) = ∇(3xy − 3y2) = 3y i + (3x − 6y)j

= 3y(i− j) + 3y j + (3x − 6y)j

= 3y(i− j) + (3x − 3y)j

= 3y(i− j) + (x − y)3j = g∇f + f∇g .
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Functions of Three Variables

For a differentiable function f (x , y , z) and a unit vector
u = u1i + u2j + u3k in space, we have

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

and

Du f = (∇f ).u =
∂f

∂x
u1 +

∂f

∂y
u2 +

∂f

∂z
u3.

The directional derivative can once again be written in the form

Du f = ∇f .u = |∇f | cos θ,

so the properties listed earlier for functions of two variables continue to
hold. At any given point, f increases most rapidly in the direction of ∇f
and decreases most rapidly in the direction of −∇f . In any direction
orthogonal to ∇f , the derivative is zero.
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Example

Example 12.

(a) Find the derivative of f (x , y , z) = x3 − xy2 − z at P0(1, 1, 0) in the
direction of v = 2i− 3j + 6k.

(b) In what directions does f change most rapidly at P0, and what are
the rates of change in these directions?
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Solution

(a) The direction of v is obtained by dividing v by its length:

|v| =
√

(2)2 + (−3)2 + (6)2 =
√

49 = 7

u =
v

|v|
=

2

7
i−

3

7
j +

6

7
k.

The partial derivatives of f at P0 are
fx = (3x2 − y2)(1,1,0) = 2, fy = −2xy |(1,1,0) = −2, fz = −1|(1,1,0) = −1.
The gradient of f at P0 is ∇f |(1,1,0) = 2i− 2j− k. The derivative of f at P0 in the
direction of v is therefore

(Duf )(1,1,0) = ∇f |(1,1,0) · u = (2i− 2j− k) ·
(

2

7
i−

3

7
j +

6

7
k

)
=

4

7
+

6

7
−

6

7
=

4

7
.

(b) The function increases most rapidly in the direction of ∇f = 2i− 2j− k and decreases
most rapidly in the direction of −∇f . The rates of change in the directions are,
respectively,

|∇f | =
√

(2)2 + (−2)2 + (−1)2 =
√

9 = 3 and − |∇f | = −3.

P. Sam Johnson Directional Derivatives in the Plane 42 / 73



Exercises

Exercise 13.

Find the gradient of the function at the given point. Then sketch the
gradient together with the level curve that passes through the point.

1. g(x , y) = xy2, (2,−1)

2. f (x , y) =
√

2x + 3y , (−1, 2)

3. f (x , y) = tan−1
√
x
y , (4,−2)
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Solution for the Exercise 13

1. δg
δx = y2 ⇒ δg

δx (2,−1) = 1; δgδy = 2x y ⇒ δg
δx (2,−1) = −4;⇒ Og =

i − 4j ; g(2,−1) = 2⇒ x = 2
y2 is the level curve.

2. δf
δx = 1√

2x+3y
⇒ δf

δx (−1, 2) = 1
2 ; δfδy = 3

2
√

2x+3y
= δf

δx (−1, 2) = 3
4 ;⇒

Of = 1
2 i + 3

4 j ; f (−1, 2) = 2⇒ 4 = 2x + 3y is the level curve.

3. δf
δx = y

2y2
√
x+2x3/2 ⇒ δf

δx (4,−2) = − 1
16 ; δfδy =

√
x

2y2+x
⇒ δf

δy (4,−2) =

−1
4 ⇒ Of = − 1

16 i −
1
4 j ; f (4,−2) = −π

4 ⇒ y = −
√
x is the level

curve.
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Exercises

Exercise 14.

Find ∇f at the given point.

1. f (x , y , z) = 2z3 − 3(x2 + y2)z + tan−1 xz , (1, 1, 1)

2. f (x , y , z) = (x2 + y2 + z2)−1/2 + ln(xyz), (−1, 2,−2)

3. f (x , y , z) = ex+y cos z + (y + 1) sin−1 x , (0, 0, π/6)
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Solution for the Exercise 14

1. δf
δx = −6xz + z

x2z2+1
⇒ δf

δx (1, 1, 1) = −11
2 ; δfδy = −6yz ⇒ δf

δy (1, 1, 1) =

−6; δfδz = 6z2 − 3(x2 + y2) + x
x2z2+1

⇒ δf
δz (1, 1, 1) = 1

2 ; thus Of =

−11
2 i − 6j + 1

2k

2. δf
δx = − x

(x2+y2+z2)3/2 + 1
x ⇒

δf
δx (−1, 2,−2) = −26

27 ; δfδy =

− y
(x2+y2+z2)3/2 + 1

y ⇒
δf
δy (−1, 2,−2) = 23

54 ; δfδz = − z
(x2+y2+z2)3/2 + 1

z ⇒
δf
δz (−1, 2,−2) = 23

54 ; thus Of = −26
27 i + 23

54 j −
23
54k

3. δf
δx = ex+y cos z + y+1√

1−x2
⇒ δf

δx (0, 0, π6 ) =
√

3
2 + 1; δfδy =

ex+y cos z + sin−1 x ⇒ δf
δy (0, 0, π6 ) =

√
3

2 ; δfδz = −ex+y sin z ⇒
δf
δz (0, 0, π6 ) = −1

2 ; thus Of = (
√

3+2
2 )i +

√
3

2 j − 1
2k
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Exercise 15.

1. What is the derivative of a function f (x , y) at a point P0 in the
direction of a unit vector u ? What rate does it describe? What
geometric interpretation does it have? Give examples.

2. What is the gradient vector of a differentiable function f (x , y)? How
is it related to the function’s directional derivatives? State the
analogous results for functions of three independent variables.

3. How do you find the tangent line at a point on a level curve of a
differentiable function f (x , y)? Give an example.

4. Find the derivative of the function at P0 in the direction of u.

(a) f (x , y) = 2xy − 3y2, P0(5, 5), u = 4i + 3j
(b) h(x , y) = tan−1(y/x) +

√
3 sin−1(xy/2), P0(1, 1), u = 3i− 2j

(c) f (x , y , z) = xy + yz + zx , P0(1,−1, 2), u = 3i + 6j− 2k
(d) g(x , y , z) = 3ex cos yz , P0(0, 0, 0), u = 2i + j− 2k
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Solution for (4.) in Exercise 15

(a) u = A
|A| = 4i+3j√

42+32
= 4

5
i + 3

5
j ; fx (x , y) = 2y ⇒ fx (5, 5) = 10; fy (x , y) = 2x − 6y ⇒

fy (5, 5) = −20⇒ Of = 10i − 20j ⇒ (Duf )pu = Of .u = 10( 4
5

)− 20( 3
5

) = −4

(b) u = A
|A| = 3i−2j√

32+(−2)2
= 3√

13
i − 2√

13
j ; hx (x , y) = (x2)

( y
x

)2+1
+

( y
x

)
√

3√
1−( x2y2

4
)

⇒ hx (1, 1) =

1
2

; hy (x , y) =
( 1
x

)

( y
x

)2+1
+

( x
2

)
√

3√
1−( x2y2

4
)

= hy (1, 1) = 3
2
⇒ Oh = 1

2
i + 3

2
j ⇒ (Duh)PD

= Oh.u =

3
2
√

13
− 6

2
√

13
= − 3

2
√

13

(c) u = A
|A| = 3i+6j−2k√

32+62+(−2)2
= 3

7
i + 6

7
j − 2

7
k; fx (x , y , z) = y + z ⇒ fx (1,−1, 2) =

1; fy (x , y , z) = x + z ⇒ fy (1,−1, 2) = 3; fz (x , y , z) = y + x ⇒ fz (1,−1, 2) = 0⇒ Of =
i + 3j ⇒ (Duf )P0

= Of .u = 3
7

+ 18
7

= 3

(d) u = A
|A| = 2i+j−2k√

22+12+(−2)2
= 2

3
i + 1

3
j − 2

3
k; gx (x , y , z) = 3ex cos yz ⇒ gx (0, 0, 0) =

3; gy (x , y , z) = −3zex sinyz ⇒ gy (0, 0, 0) = 0; gz (x , y , z) = −3yex sin yz ⇒ gz (0, 0, 0) =
0⇒ Og = 3i ⇒ (Dug)P0

= Og .u = 2
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Exercise 16.

Find the directions in which the functions increase and decrease most
rapidly at P0. Then find the derivatives of the functions in these
directions.

(a) f (x , y) = x2 + xy + y2, P0(−1, 1)

(b) f (x , y , z) = ln xy + ln yz + ln xz , P0(1, 1, 1)
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Solution for the Exercise 16

(a) Of = (2x + y)i + (x + 2y)j ⇒ Of (−1, 1) = −i + j ⇒ u = Of
|Of | =

−i+j√
(−1)2+12

= − 1√
2
i + 1√

2
j ; f increases most rapidly in the direction

u = − 1√
2
i + 1√

2
j and decreases most rapidly in the direction −u =

1√
2
i − 1√

2
j ; (Duf )P0 = Of .u = |Of | =

√
2 and (D−uf )p0 = −

√
2.

(b) Of = ( 1
x + 1

x )i + ( 1
y + 1

y )j + ( 1
z + 1

z )k ⇒ Of (1, 1, 1) =

2i + 2j + 2k ⇒ u = Of
|Of | = 1√

3
i + 1√

3
j + 1√

3
k ; f increases most rapidly

in the direction u = 1√
3
i + 1√

3
j + 1√

3
k and decreases most rapidly in

the direction −u = − 1√
3
i − 1√

3
j − 1√

3
k; (Duf )p0 = Of .u = |Of | =

2
√

3 and (D−uf )p0 = −2
√

3.
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Exercises

Exercise 17.

Sketch the curve f (x , y) = c together with ∇f and the tangent line at the
given point. Then write an equation for the tangent line.

1. xy = −4, (2,−2)

2. x2 − xy + y2 = 7, (−1, 2)
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Solution for the Exercise 17

1. Of = yi + xj ⇒ Of (2,−2) = −2i + 2j ⇒ Tangent line :
−2(x − 2) + 2(y + 2) = 0⇒ y = x − 4.

2. Of = (2x − y)i + (2y − x)j ⇒ Of (−1, 2) = −4i + 5j ⇒
Tangent line : −4(x + 1) + 5(y − 2) = 0⇒ −4x + 5y − 14 = 0.
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Exercises

Exercise 18.

1. Let f (x , y) = x2 − xy + y2 − y. Find the directions u and the values
of Duf (1,−1) for which

(a) Duf (1,−1) is largest
(b) Duf (1,−1) is smallest
(c) Duf (1,−1) = 0
(d) Duf (1,−1) = 4
(e) Duf (1,−1) = −3.

2. Let f (x , y) = (x−y)
(x+y) . Find the directions u and the values of

Duf (−1
2 ,

3
2 ) for which

(a) Duf (− 1
2 ,

3
2 ) is largest

(b) Duf (− 1
2 ,

3
2 ) is smallest

(c) Duf (− 1
2 ,

3
2 ) = 0

(d) Duf (− 1
2 ,

3
2 ) = −2

(e) Duf (− 1
2 ,

3
2 ) = 1.
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Solution for (1.) in Exercise 18

Of = (2x − y)i + (−x + 2y − 1)j

(a) Of (1,−1) = 3i − 4j ⇒ |Of (1,−1)| = 5⇒ Duf (1,−1) = 5in the direction of u = 3
5
i − 4

5
j

(b) −Of (1,−1) = −3i + 4j ⇒ |Of (1,−1)| = 5⇒ Duf (1,−1) = −5 in the direction of u =
− 3

5
i + 4

5
j

(c) Duf (1,−1) = 0 in the direction of u = 4
5
i + 3

5
j or u = − 4

5
i − 3

5
j

(d) Let u = u1i + u2j ⇒ |u| =
√

u2
1 + u2

2 = 1⇒ u2
1 + u2

2 = 1;Duf (1,−1) = Of (1,−1) · u =

(3i − 4j) · (u1i + u2j) = 3u1 − 4u2 = 4⇒ u2 = 3
4
u1 − 1⇒ u2

1 + ( 3
4
u1 − 1)2 = 1⇒

25
16
u2

1 −
3
2
u1 = 0⇒ u1 = 0 or u1 = 24

25
; u1 = 0⇒ u2 = −1⇒ u = −j , or u1 = 24

25
⇒ u2 =

− 7
25
⇒ u = 24

25
i − 7

25
j

(e) Let u = u1i + u2j ⇒ |u| =
√

u2
1 + u2

2 = 1⇒ u2
1 + u2

2 = 1;Duf (1,−1) = Of (1,−1) · u =

(3i − 4j) · (u1i + u2j) = 3u1 − 4u2 = −3⇒ u1 = 4
3
u2 − 1⇒ ( 4

3
u2 − 1)2 + u2

2 = 1⇒
25
9
u2

2 −
8
3
u2 = 0⇒ u2 = 0 or u2 = 24

25
; u2 = 0⇒ u1 = −1⇒ u = −i , or u2 = 24

25
⇒ u2 =

7
25
⇒ u = 7

25
i + 24

25
j
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Solution for (2.) in Exercise 18

Of = 2y
(x+y)2 i − 2x

(x+y)2 j

(a) Of (− 1
2
, 3

2
) = 3i + j ⇒ |Of (− 1

2
, 3

2
)| =

√
10⇒ Duf (− 1

2
, 3

2
) =
√

10 in the direction of

u = 3√
10
i + 1√

10
j

(b) −Of (− 1
2
, 3

2
) = −3i − j ⇒ |Of (− 1

2
, 3

2
)| =

√
10⇒ Duf (1,−1) = −

√
10 in the direction of

u = − 3√
10
i − 1√

10
j

(b) Duf (− 1
2
, 3

2
) = 0 in the direction of u = 1√

10
i − 3√

10
j or u = − 1√

10
i + 3√

10
j

(c) Let u = u1i + u2j ⇒ |u| =
√

u2
1 + u2

2 = 1⇒ u2
1 + u2

2 = 1;Duf (− 1
2
, 3

2
) = Of (− 1

2
, 3

2
) · u =

(3i + j) · (u1i + u2j) = 3u1 + u2 = −2⇒ u2 = −3u1 − 2⇒ u2
1 + (−3u1 − 2)2 = 1⇒

10u2
1 + 12u1 + 3 = 0⇒ u1 = −6±

√
6

10
u1 = −6+

√
6

10
⇒ u2 = −2−3

√
6

10
⇒ u =

−6+
√

6
10

i + −2−3
√

6
10

j , or u1 = −6−
√

6
10

⇒ u2 = −2+3
√

6
10

⇒ u = −6−
√

6
10

i + −2+3
√

6
10

j

(d) Let u = u1i + u2j ⇒ |u| =
√

u2
1 + u2

2 = 1⇒ u2
1 + u2

2 = 1;Duf (− 1
2
, 3

2
) = Of (− 1

2
, 3

2
) · u =

(3i + j) ·(u1i +u2j) = 3u1 +u2 = 1⇒ u2 = 1−3u1 ⇒ u2
1 +(1−3u1)2 = 1⇒ 10u2

1−6u1 =

0⇒ u1 = 0 or u1 = 3
5

; u1 = 0⇒ u2 = 1⇒ u = j , or u1 = 3
5
⇒ u2 = − 4

5
⇒ u = 3

5
i − 4

5
j
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Exercises

Exercise 19.

1. Zero directional derivative : In what direction is the derivative of
f (x , y) = xy + y2 at P(3, 2) equal to zero?

2. Zero directional derivative : Is there a direction u in which the rate
of change of f (x , y) = x2 − 3xy + 4y2 at P(1, 2) equals 14? Give
reasons for your answer.
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Solution for the Exercise 19

1. Of = yi + (x + 2y)j ⇒ Of (3, 2) = 2i + 7j ; a vector orthogonal to
Of is v = 7i − 2j ⇒ u = v

|v | = 7i−2j√
72+(−2)2

= 7√
53
i − 2√

53
j and − u =

− 7√
53
i + 2√

53
j are the directions where the derivative is zero.

2. Of = (2x − 3y)i + (−3x + 8y)j ⇒ Of (1, 2) = −4i + 13j ⇒
|Of (1, 2)| =

√
(−4)2 + (13)2 =

√
185; no, the maximum rate of

change is
√

185 < 14.
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Exercises

Exercise 20.

1. Changing temperature along a circle : Is there a direction u in which
the rate of change of the temperature function T (x , y , z) = 2xy − yz
(temperature in degrees Celsius, distance in feet) at P(1,−1, 1) is −3
deg.Cel/ft ? Give reasons for your answer.

2. The derivative of f (x , y , z) at a point P is greatest in the direction of
v = i + j− k. In this direction, the value of the derivative is 2

√
3.

(a) What is 5f at P ? Give reasons for your answer.
(b) What is the derivative of f at P in the direction of i + j ?
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Solution for the Exercise 20

1. OT = 2yi + (2x − z)j − yk ⇒ OT (1,−1, 1) = −2i + j + k ⇒
|OT (1,−1, 1)| =

√
(−2)2 + 12 + 12 =

√
6; no, the minimum rate of

change is −
√

6 > −3

2. (a) (Duf )p = 2
√

3⇒ |Of | = 2
√

3; u v
|v | = i+j−k√

12+12+(−1)2
=

1√
3
i + 1√

3
j − 1√

3
k ; thus u = Of

|Of | ⇒ Of = |Of |u ⇒ Of =

2
√

3( 1√
3
i + 1√

3
j − 1√

3
k) = 2i + 2j − 2k

(b) v = i + j ⇒ u = v
|v | = i+j√

12+12
= 1√

2
i + 1√

2
j ⇒ (Duf )P0 = Of .u =

2( 1√
2

) + 2( 1√
2

) = 2(0) = 2
√

2
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Exercises

Exercise 21.

1. Directional derivatives and scalar components : How is the derivative
of a differentiable function f (x , y , z) at a point P0 in the direction of
a unit vector u related to the scalar component of (∇f )P0 in the
direction of u? Give reasons for your answer.

2. Directional derivatives and partial derivatives : Assuming that the
necessary derivatives of f (x , y , z) are defined, how are Dif , Djf , and
Dkf related to fx , fy , and fz? Give reasons for your answer.
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Solution for the Exercise 21

1. The directional derivative is the scalar component. With Of in the
direction of u is Of .u = (Duf )p0 .

2. Di f = Of .i = (fx i + fy j + fzk) · i = fx ; similarly, Dj f = Of · j = fy
and Dk f = Of · k = fz
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Exercises

Exercise 22.

1. Lines in the xy -plane : Show that A(x − x0) + B(y − y0) = 0 is an
equation for the line in the xy-plane through the point (x0, y0) normal
to the vector N = Ai + B j.

2. The algebra rules for gradients : Given a constant k and the
gradients

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k, ∇g =

∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k,

establish the algebra rules for gradients.
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Proof for (1.) in Exercise 22

1. If (x , y) is a point on the line, then T (x , y) = (x − x0)i + (y − y0)j is
a vector parallel to the line
⇒ T · N = 0⇒ A(x − x0) + B(y − y0) = 0, as claimed.
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Proof for (2.) in Exercise 22

(a) O(kf ) = δ(kf )
δx

i + δ(kf )
δy

j + δ(kf )
δz

k = k( δf
δx

)i +k( δf
δy

)j +k( δf
δz

)k = k( δf
δx

i + δf
δy

j + δf
δz

k) = kOf

(b) O(f + g) = δ(f +g)
δx

i + δ(f +g)
δy

j + δ(f +g)
δz

k = ( δf
δx

+ δg
δx

)i + ( δf
δy

+ δg
δy

)j + ( δf
δz

+ δg
δz

)k =
δf
δx

i + δg
δx

i + δf
δy

j + δg
δy

j + δf
δz

k + δg
δz

k = ( δf
δx

i + δf
δy

j + δf
δz

k) + ( δg
δx

i + δg
δy

j + δg
δz

k) = Of +Og

(c) O(f − g) = Of − Og(Substite −g for in part (b) above)

(d) O(fg) = δ(fg)
δx

i + δ(fg)
δy

j + δ(fg)
δz

k =
(
δf
δx

g + δg
δx

f
)
i +
(
δf
δy

g + δg
δy

f
)
j +
(
δf
δz

g + δg
δz

f
)
k =(

δf
δx

g
)
i +
(
δg
δx

f
)
i +
(
δf
δy

g
)
j +
(
δg
δy

f
)
j +
(
δf
δz

g
)
k +

(
δg
δz

f
)
k =

f
(
δg
δx

i + δg
δy

j + δg
δz

k
)

+ g
(
δf
δx

i + δf
δy

j + δf
δz

k
)

= f Og + gOf

(e) O( f
g

) =
δ( f

g
)

δx
i +

δ( f
g

)

dy
j +

δ( f
g

)

δz
k =

(
g δf

δx
−f δg

δx
g2

)
i +

(
g δf

δy
−f δg

δy

g2

)
j +

(
g δf

δz
−f δg

δz
g2

)
k =(

g δf
δx

i+g δf
δy

j+g δf
δz

k

g2

)
−
(

f δg
δx

i+f δg
δy

j+f δg
δz

k

g2

)
=

g

(
δf
δx

i+g δf
δy

j+g δf
δz

k

g2

)
− f

( δg
δx

i+f δg
δy

j+f δg
δz

k

g2

)
= gOf

g2 −
fOg
g2 = gOf−fOg

g2 .
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Exercises

Exercise 23.

1. Find the directions in which the functions increase and decrease most
rapidly at P0. Then find the derivatives of the functions in these
directions. Also find the dertivative of f at P0 in the direction of the
vector v.

(a) f (x , y) = x2e−2y , P0(1, 0), v = i + j
(b) f (x , y , z) = ln(2x + 3y + 6z), P0(−1,−1, 1), v = 2i + 3j + 6k

2. What is the largest value that the directional derivative of
f (x , y , z) = xyz can have at the point (1, 1, 1)?
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Exercises

Exercise 24.

1. The temperature of a point in space is given by
T (x , y , z) = x2 + y2 − z. A mosquito located at (1, 1, 2) desires to
fly in such a direction that it will get warm as soon as possible. In
what direction should it move?

2. Prove the following :

(a) 5rn = nrn−2r
(b) 5 1

r = −r
r3

(c) 5ln |r| = r
r2 where r = x i + y j + zk, |r| = r and n is an integer.

3. Find the directional derivative of f (x , y , z) = x2 − y2 + 2z2 at the
point P(1, 2, 3) in the direction of the line PQ where Q is the point
(5, 0, 4). Also, calculate the magnitude of the maximum directional
derivative.
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Weather Map

The weather map in the Figure shows a contour
map of the temperature function T (x , y) for the
states of California and Nevada at 3 : 00 PM on a
day in October. The level curves, or isothermals,
join locations with the same temperature.
The partial derivative Tx at a location such as
Reno is the rate of change of temperature with
respect to distance if we travel east from Reno;
Ty is the rate of change of temperature if we
travel north. But what if we want to know the
rate of change of temperature when we travel
southeast (toward Las Vegas), or in some other
direction?

Directional derivative enables us to find the rate

of change of a function of two or more variables

in any direction.
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Weather Map

Exercise 25.

Use the weather map in the above figure to estimate the value of the
directional derivative of the temperature function at Reno in the
southeasterly direction.

Solution :

The unit vector directed toward the
southeast is u = (i − j)/

√
2, but we

won’t need to use this expression.

We start by drawing a line through
Reno toward the south-east.
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Solution (contd...)

We approximate the directional derivative DuT by the average rate of
change of the temperature between the points where this line intersects
the isothermals T = 50 and T = 60.

The temperature at the point southeast of Reno is T = 60◦F and the
temperature at the point northwest of Reno is T = 50◦F .

The distance between these points looks to be about 75 miles. So the rate
of change of the temperature in the southeasterly direction is

DuT ≈
60− 50

75
=

10

75
≈ 0.13◦F/mi .
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Old Questions

Exercise 26.

The directional derivative of the function f (x , y , z) = 3xy + z2 at the
point P0(1,−2, 2) in the direction from the point P0 towards the origin is

(a)
4

3

(b)
3

4

(c) −3

4

(d) −4

3

Correct Answer :
4

3
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Old Questions
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Old Questions
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